Resolving the Earthquake Source Scaling Problem: Part 1: Regional Spectra

William R. Walter and Kevin Mayeda

Earth Sciences Division, LLNL

Lab-Wide LDRD Project
July 24, 2003
Earthquake Energy Scaling Workshop
Wente Vineyards, Livermore CA

Recently we won LW LDRD funding to revise and update our 1996 study of earthquake energy scaling

1996 study used 117 western U.S. earthquakes

We will greatly improve on earlier work by:

- 1) increasing the number of events by a factor of 5 (especially M<4 and M>6)
- 2) comparing results to a second independent technique (MDAC)
- 3) including accurate uncertainty measures for energy and moment
- 4) determining slope and variance for two regions (Western U.S. and Middle East)

MDAC2 - Magnitude and Distance Amplitude Correction is a earthquake seismic spectral fitting technique

For nuclear test monitoring purposes Walter and Taylor (2002) developed a model to predict earthquake spectra. The instrument-corrected regional amplitude of a particular phase (e.g. Pn, Pg, Sn, Lg, Coda-envelope) at a particular station:

where \square is the angular frequency and R is the distance and:

S([]) is the source spectrum (modified Brune 1970 type with variable apparent stress)

G(R) is the geometrical spreading (Street et al 1975 type)

 $P(\square)$ is the site effect

B([],R) is the apparent attenuation (frequency dependent Q) resulting in:

$$\log A_{m} \left(\square, R \right) = \log(FM_{o}) \left[\square \log \left(\square + \square \right) \right] + \log G(R) + P(f) \left[\square \frac{\square R \log e}{Q_{o} c} \right] \left[\square \right] \left[\square \right] \log(e)$$

$$\square_{cS} = \square K \square_{a} \square^{1/3} \qquad \text{where} \qquad K = \frac{16 \square}{\square_{s}^{2} \square N_{s}^{2} \square$$

Where the corner frequency is in terms of apparent stress

(Walter and Taylor, UCRL-ID-146882, 2002)

We evaluate whether constant or variable apparent stress better fits individual earthquake sequences with MDAC2

Example: MDAC Lg spectral fits to NTS 1992 Little Skull Mountain earthquakes

By examining earthquake sequences at the same station, we have common path and site effects, and the observed differences can be attributed to the source.

We evaluate energy scaling for large earthquake sequences like Hector Mine for contant station and path

We use independent mainshock moment and apparent stress to determine path correction

We use 3-component spectra and grid search for best fitting frequencydependent Q for each phase at each station

All Hector Mine events are then evaluated using this correction

For each event we grid search for the best fitting energy value and uncertainty using the calibrated path

Spectral energies show apparent stress scaling and energy values are consistent with coda estimates

We can do the same analysis on Pn and Pg spectra So far all phases and coda show similar scaling

